Data warehouse enhancement: A semantic cube model approach

نویسندگان

  • Shi-Ming Huang
  • Tung-Hsiang Chou
  • Jia-Lang Seng
چکیده

Many data warehouse systems have been developed recently, yet data warehouse practice is not sufficiently sophisticated for practical usage. Most data warehouse systems have some limitations in terms of flexibility, efficiency, and scalability. In particular, the sizes of these data warehouses are forever growing and becoming overloaded with data, a scenario that leads to difficulties in data maintenance and data analysis. This research focuses on data-information integration between data cubes. This research might contribute to the resolution of two concerns: the problem of redundancy and the problem of data cubes’ independent information. This work presents a semantic cube model, which extends objectoriented technology to data warehouses and which enables users to design the generalization relationship between different cubes. In this regard, this work’s objectives are to improve the performance of query integrity and to reduce data duplication in data warehouse. To deal with the handling of increasing data volume in data warehouses, we discovered important inter-relationships that hold among data cubes, that facilitate information integration, and that prevent the loss of data semantics. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Semantic Schema Matching Approach

Schema matching is a critical step in many applications, such as data warehouse loading, Online Analytical Process (OLAP), Data mining, semantic web [2] and schema integration. This task is defined for finding the semantic correspondences between elements of two schemas. Recently, schema matching has found considerable interest in both research and practice. In this paper, we present a new impr...

متن کامل

New Approach of Computing Data Cubes in Data Warehousing

The paper is dealing with data cubes built for data warehouse for OLAP purposes. OLAP (Online Analytical Processing) system offers multidimensional data analysis in which large volume of historically collected data is computed. To decrease the query time and to provide various options to the analysts, a data model was designed to organize data perfectly in a multidimensional data model. In OLAP...

متن کامل

Incremental Maintenance of Data Cubes

Data cube construction is a commonly used operation in data warehouses. Because of the volume of data stored and analyzed in a data warehouse and the amount of computation involved in data cube construction, incremental maintenance of data cube is really effective. To maintain a data cube incrementally, previous methods were mainly for relational databases. In this paper, we employ an extendibl...

متن کامل

Towards Ontology-Driven Approach for Data Warehouse Analysis

Understanding, reusing, and maintaining data warehouse resources is a key challenge for data warehouse users. Data warehouses resources are shared by different groups of users. The interpretation of information is subjective, it depends on user knowledge. Thus, a resource, like a data cube, is interpreted differently from a user to another. Unfortunately, misinterpreting data could induce serio...

متن کامل

Towards Principles for Structuring and Managing Very Large Semantic Multidimensional Data Models

The management of semantic multidimensional data models plays an important role during the phases of development and maintenance of data warehouse systems. Unfortunately, this is not done with the necessary stress by now. Reasons might be seen in the plethora of semantic notations or the insufficient tool support for multidimensional modeling. The paper on hand provides experiences gained withi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2007